О нашей школе Обучение Полезные ссылки Контакты

Как научить ребенка делить и умножать в столбик


Деление столбиком - примеры для 3 класса с решением

04 июня 2019

Аверьянова Света

главное фото

Азы деления столбиком и в уме дети изучают в начальной школе: в 3-м или 4-м классе. Но вникают в материал быстро и легко далеко не все третьеклассники. Дома нужно много практиковаться, решать тренировочные примеры. Но сначала лучше еще раз объяснить деление уголком, с остатком, выявить пробелы в детских знаниях.

Как стать суперучителем без специальной подготовки и помочь ребенку с этой трудной темой, расскажем подробнее.

Из этой статьи вы узнаете

Как научиться делить столбиком

Деление столбиком с остатком и без него нельзя начинать без подготовки. Сначала ребенок должен хорошо уметь и знать следующее:

  • Разряды натуральных чисел (десятки, сотни, тысячи). Находить их в ряду многозначных цифр.
    разряды
  • Таблица умножения. Этот материал лучше выучить наизусть и постоянно повторять.
  • Отнимать, складывать многозначные числа.
  • Решать маленькие задачи на умножение, разность, сумму устно.

Отработайте все обозначенные умения до автоматизма. Затем приступайте к делению маленьких цифр на примере таблицы умножения в уме. Например, ребенок выучил, как умножать цифру 6:

6х2=12

6х3=18

6х4=24 и так далее.

Смело предлагайте такие примеры:

24:6=4

24:4=6

12:2=6

18:3=6

Через пару уроков школьник будет выполнять такие задания легко. Можно разнообразить занятия по устному счету играми на деление.

На заметку! Все начальные математические навыки хорошо автоматизируются с помощью онлайн-тестов, где ребенок получает мгновенный результат своей работы.

Игровые задания

Интересные математические игры на деление помогают детям закрепить навык, узнать законы работы с цифрами, освоить устный счет.

примеры деления

примеры деления

  • Головоломки на развитие внимания. Напишите в тетради 3–5 примеров на деление с ответами. Все, кроме одного, должны быть решены неверно. Нужно быстро найти тот пример, который содержит правильный ответ. Затем исправить остальные с помощью устного счета.
  • Подбор примера по результату. Предлагайте малышу ответ без примера. Давайте задание придумать задачу. Например, ответ 8. Ребенок может придумать такую задачу: 48:6.
  • «Идем в магазин». Расставьте на полу игрушки с карточками. На листах написаны примеры: 6:2, 18:3, 42:7, 100:50. Игрушки — это «товар» в фантазийном магазине, частное после решения примера — их цена. Чтобы узнать стоимость покупки, нужно решить задания, а потом оплатить полученный результат в кассу. Играть лучше в небольшой команде — 2–3 человека.
  • «Молчуны». Ребенок получает карточки с цифрами от 1 до 100. Задавайте вопросы с примерами на деление, ученик должен отвечать без слов, показывая правильный ответ.
  • Небольшие самостоятельные работы с подарком за старательность. Распечатайте карточки с примерами в количестве 5–10 штук. Укажите время на решение, например 5 минут. Поставьте перед ребенком песочные часы. После выполнения контрольной верно поощрите школьника походом в зоопарк, кино, покупкой книги, сладостей.
  • «Ищем дерево». Нарисуйте небольшой сад с деревьями на картоне. Каждому растению дайте номер, пусть их будет 10. На листочке для ученика напишите 3 примера:

45:9           120:60          14:7

Школьник должен вычислять результат к каждому заданию, а потом складывать все числа между собой.

Получится так:

45:9=5

120:60=2

14:7=2

5+2+2=9

Ребенок должен найти дерево под номером 9.

деревья

Для игры можно использовать цветные пуговицы и ставить их на занятые деревья. Развлечение подходит для командных соревнований.

После устной работы с делением натуральных чисел можно показать ребенку порядок записи примеров столбиком.

Если педагогического опыта у вас нет, посмотрите видеоурок на эту тему, вспомните теорию сами.

Теперь можно приступать к объяснению сложного материала школьнику. Есть несколько методик домашнего обучения делению:

1. Мама-учитель

Родителям придется ненадолго стать педагогами. Оборудовать доску, купить мел или маркеры. Заранее вспомнить школьный материал. Объяснить пошагово теорию и закрепить ее на практике с помощью большого количества самостоятельных, карточек, контрольных работ.

2. Посмотреть вместе с ребенком обучающее видео

Например, это:

Затем нужно обсуждать с малышом материал, закреплять навык на практике несколько недель.

3. Нанять репетитора

Деление не самая сложная тема в школьной программе. В начальных классах можно легко обойтись без платных уроков с педагогом. Этот вариант оставим на крайний случай.

На заметку! Обязательно противопоставляйте деление умножению. Проверяйте результат обоих действий противоположным.

Как объяснить деление столбиком

Сначала стоит доходчиво объяснить, что такое деление на простом примере. Суть математического действия — разложить число поровну. В 3-м классе дети хорошо учатся на доступных примерах: раздают кусочки торта гостям, рассаживают кукол по 2 машинам.

Когда малыш усвоит суть деления, покажите его запись на листке. Используйте уже знакомые задания с простыми числами:

  • Сначала запишите задачу обычным способом: 250:2=?
  • Каждому числу дайте название: 250 — делимое, 2 — делитель, результат после знака равно — частное.
  • Затем сделайте сокращенную запись столбиком (уголком):

пример

  • Рассуждайте вместе так: сначала найдем неполное частное. Это будет 2, так как оно не меньше делителя, а вернее, равно ему. В этом числе помещается один делитель, значит, в частное записываем цифру 1 и умножаем ее на 2. Заносим полученный результат под делимым. Отнимаем 2-2. Получится ноль, поэтому сносим следующее число и опять подыскиваем частное. Совершаем математическое действие до тех пор, пока не получится ноль.
  • После получения окончательного результат сделайте проверку с помощью умножения: 125х2=250.

Желательно научить третьеклассника рассуждать в процессе вычисления вслух, выполнять действия на черновике. Сначала проговаривайте алгоритм вместе, потом только слушайте ученика и помогайте исправить ошибки.

На заметку! Приучайте малыша постоянно проверять себя. Школьник должен понимать, что величина остатка вычитания в столбике деления должен всегда быть меньше делителя.

Деление на однозначное число

Возьмите листок и ручку, посадите ребенка рядом. Сначала запишите пример уголком сами. Для деления на однозначное число выбирайте такие цифры, которые дают результат без остатка (полный ответ).

Первый урок можно построить так:

  1. Положите перед ребенком картинку с образцом деления столбиком.
  2. Придумайте собственный пример. Пусть это будет 254:2
  3. Задание нужно записывать уголком. Доверьте это школьнику. Он может посмотреть, как делается запись на картинке.
  4. Спросите третьеклассника: «Какое число нужно делить на 2 первым?». В этот момент важно объяснять, что делимое должно быть равно или большего делителя. Малыш выделит для деления первое число из данной цифры: 254
  5. Теперь определите вместе, сколько двоек поместится в числе 2. Ответ: 1.
  6. Записываем частное под уголком.
  7. Умножаем 1 на 2 и записываем результат под делимым.
  8. Вычитаем.
  9. Так как получился 0, сносим следующую цифру под линию после вычитания: 5.
  10. Опять задаем вопрос: «Сколько двоек поместится в 5?» Малыш вспоминает таблицу умножения или подбирает частное с помощью логики. Отвечает: 2.
  11. Записываем 2 в частное, умножаем на 2.
  12. Результат (4) записываем под 5.
  13. Отнимаем.
  14. Остается 1. Единицу разделить на 2 нельзя, поэтому сносим остатки делимого вниз. Получается 14.
  15. Делим 14 на 2. Записываем в частное 7.
  16. Умножаем на 2. Записываем под чертой 14.
  17. Отнимаем.
  18. В конце всегда должен получаться 0.
  19. В результате у ребенка сформируется такая запись:

пример

Для закрепления запишите еще 3–5 примеров на деление на этом же листочке. Не отходите далеко от школьника, образец не прячьте, не превращайте урок в проверочную работу. Малыш только учится делить. На этом этапе помогайте ему, подсказывайте и наталкивайте на правильное решение для повышения уверенности в себе.

На заметку! Для автоматизации навыка деления столбиком можно составить небольшую памятку, где прописан каждый этап математического действия.

Разрешайте школьнику смотреть в нее до тех пор, пока он сам не забудет об образце.

примеры

Деление на двузначное число

Когда ученик 3-го класса усвоил деление на однозначное число, можно приступать к следующему этапу — работе с двузначными цифрами. Начинайте с простых, явных примеров, чтобы малыш понял алгоритм действий. Например, возьмите числа 196 и 28 и объясните принцип:

  1. Сначала подберите примерное число для ответа. Для этого выясните приблизительно, сколько цифр 28 поместится в 196. Для удобства можно округлять оба числа: 200:30. Получится не больше 6. Полученное число не нужно записывать, это только догадка.
  2. Проверяем результат умножением: 28х6. Получается 196. Предположения оказались верными.
  3. Запишите ответ: 196:28 =6.

Еще один вариант обучения: деление на двузначное число уголком. Такой способ больше подходит для работы с числами от четырех разрядов, то есть тысяч. Приведем простой пример:

  1. Напишите на листе бумаги 4070, начертите уголок и подпишите делитель — 74.
  2. Определите, с какого числа начнете делить. Спросите у ребенка, можно ли разделить 4 на 74, 40? В результате малыш поймет, что сначала нужно ограничиться числом 407. Очертите полученную цифру сверху полукругом. 0 останется в стороне.
  3. Теперь нужно выяснить, сколько 74 поместится в 407. Действуем с помощью логики и проверки умножением. Получится 5. Записываем результат под уголком (под делителем).
  4. Теперь умножаем 74 на 5 и записываем результат под делимым. Получится 370. Важно начинать запись с первого числа слева.
  5. После записи нужно подвести горизонтальную черту и отнять 370 от 407. Получится 37.
  6. 37 разделить на 74 нельзя, поэтому вниз сносится оставшийся в верхнем ряду 0.
  7. Теперь делим 370 на 74. Подбираем множитель (5) и записываем его под уголком.
  8. Умножаем 5 на 74, записываем результат в столбик. Получится 370.
  9. Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка. 4070:74=55. Частное смотрим под уголком.

Для проверки правильности решение произведите умножение: 74х55=4070.

Есть мнение! Иметь в доме решебник с ГДЗ многие родители считают недопустимым. А зря. С помощью готовых заданий ребенок может легко проверить себя. Главное — правильно объяснить школьнику назначение сборника ДЗ с ответами.

Многозначные числа

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.
  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
    пример 3
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

На заметку! Примеры с семизначными цифрами с третьеклассниками решать не нужно. Это лишнее. Достаточно остановиться на заданиях с пятизначными числами (до 10 000). Деление миллионов дети проходят в старших классах.

Деление с остатком

Завершающим этапом уроков на закрепление навыка деления будет решение заданий с остатком. Они обязательно встретятся в решебнике для 3–4-го класса. В гимназиях с математическим уклоном школьники изучают не только неполные числа, но и десятичные дроби. Форма записи примера уголком останется прежней, отличаться будет только ответ.

Примеры на деление с остатком берите несложные, можно преобразовывать уже решенные задания с целым числом в ответе, прибавляя к делимому единицу. Это очень удобно для ребенка, он сразу увидит, чем примеры похожи и чем отличаются.

Урок может выглядеть так:

  1. Расскажите ученику третьего класса, что не все цифры можно поделить поровну. Для иллюстрации понятия возьмите натуральное число до 10. Например, попробуйте вместе разделить 9 на 2. Форма записи решения столбиком получится такой:
    пример 4
  2. Объясните школьнику, что остатком считается последнее число для деления, которое меньше делителя. Конец записи будет таким: 9:2=4 (1 — остаток).

На заметку! Отделять целое число от остатка запятой, делать из него дробное на начальном этапе обучения делению не нужно. Записывайте остаток отдельно, чтобы школьник видел конечный результат разности в столбике.

Как делать проверку

Проверка деления производится с помощью умножения: делитель умножается на делитель. Делать это можно столбиком:

пример

Теперь проверим:

проверка

Для проверки деления с остатком нужно:

  1. Умножить полное частное на делитель.
  2. Прибавить к результату остаток.

с остатком

17х2=34

34+1 (остаток) =35

Алгоритм проверки правильности решения примера деления не изменяется от разрядности цифр.

Важно! Первое время просите ребенка расписывать проверку умножением подробно, чтобы проверить и закрепить знание таблицы.

Примеры для тренировки

Научиться быстро решать примеры с делением помогают тренировочные задания. Карточками может оканчиваться каждый урок после прохождения новой темы.

Однозначные

однозначные

Двузначные

двузначные

Многозначные

многозначные

Скачать карточки

В качестве домашнего математического тренажера используйте карточки с примерами. В них включайте разные случаи: с однозначными и многозначными числами, деление с полным результатом и остатком. Скачать карточки можно бесплатно. Раздаточный материал обязательно следует напечатать для проверочной работы.

карточкикарточкикарточкипримеры

 >> Скачать  файл.DOC  для распечатки (деление на однозначное число)<<

Ошибки с делением у детей в начальной школе встречаются довольно часто. Уделите этой теме максимум внимания и времени, чтобы усвоение последующего материала проходило без запинок. Используйте карточки, видеоуроки, постоянную тренировку навыка и повторение пройденных тем в игровой форме. Тогда домашние уроки не навеют на ребенку скуку и пройдут с максимальной пользой.

ВАЖНО! *при копировании материалов статьи обязательно указывайте активную ссылку на первоисточник: https://razvitie-vospitanie.ru/kak_nauchit/rebenka_delit_v_stolbik.html

Если вам понравилась статья — поставьте лайк и оставьте свой комментарий ниже. Нам важно ваше мнение!

Поделиться с друзьями:

как объяснить ребенку деление в столбик :: SYL.ru

Деление в столбик – это неотъемлемая часть учебного материала младшего школьника. От того, насколько он правильно научится выполнять это действие, будут зависеть дальнейшие успехи в математике.

Как правильно подготовить ребенка к восприятию нового материала?

Деление в столбик – это сложный процесс, который требует от ребенка определенных знаний. Чтобы выполнить деление, необходимо знать и уметь быстро вычитать, складывать, умножать. Немаловажными являются знания разрядов чисел.

Каждое из этих действий следует довести до автоматизма. Ребенок не должен долго думать, а также уметь вычитать складывать не только числа первого десятка, а в пределах сотни за несколько секунд.

Важно формировать правильное понятие деления, как математического действия. Еще при изучении таблиц умножения и деления, ребенок должен четко понимать, что делимое – это число, которое будет делиться на равные части, делитель – указывать, на сколько частей нужно разделить число, частное – это сам ответ.

Как пошагово объяснить алгоритм математического действия?

Каждое математическое действие предполагает четкое соблюдение определенного алгоритма. Примеры на деление в столбик должны выполняться в таком порядке:

  1. Запись примера в уголок, при этом места делимого и делителя должны быть строго соблюдены. Чтобы помочь на первых этапах ребенку не запутаться, можно сказать, что слева пишем большее число, а справа – меньшее.
  2. Выделяют часть для первого деления. Оно должно делиться на делимое с остатком.
  3. При помощи таблицы умножения определяем, сколько раз может поместиться делитель в выделенной части. Важно указать ребенку, что ответ не должен превышать 9.
  4. Выполнить умножение полученного числа на делитель и записать его в левой части уголка.
  5. Далее, нужно найти разницу между частью делимого и полученным произведением.
  6. Полученное число записывают под чертой и сносят следующее разрядное число. Такие действия выполняются до того периода, пока в остатке не останется 0.

Наглядный пример для ученика и родителей

Деление в столбик можно наглядно объяснить на этом примере.

  1. Записывают в столбик 2 числа: делимое – 536 и делитель – 4.
  2. Первая часть для деления должна делиться на 4 и частное должно быть менее 9. Для этого подходит цифра 5.
  3. 4 поместиться в 5 всего 1 раз, поэтому в ответе записываем 1, а под 5 – 4.
  4. Далее, выполняется вычитание: из 5 отнимается 4 и под чертой записывается 1.
  5. К единице сносится следующее разрядное число – 3. В тринадцати (13) - 4 поместится 3 раза. 4х3= 12. Двенадцать записывают под 13-ю, а 3 – в частное, как следующее разрядное число.
  6. Из 13 вычитают 12, в ответе получают 1. Снова сносят следующее разрядное число – 6.
  7. 16 снова делится на 4. В ответ записывают 4, а в столбик деления – 16, подводят черту и в разнице 0.

Решив примеры на деление в столбик со своим ребенком несколько раз, можно достичь успехов в быстром выполнении задач в средней школе.

Как объяснить ребенку деление в столбик, или уголком: простой принцип с примерами

Содержание статьи

Чтобы упростить деление чисел, традиционно используется метод деления в столбик. Не все дети понимают принцип с первого раза, а многие взрослые уже успели его забыть. Давайте разберемся, как без лишних слов объяснить ребенку деление «уголком», чтобы он научился решать примеры с двузначными, трехзначными и даже четырехзначными числами.

Как правильно делить в столбик?

Удобнее рассмотреть сам процесс на несложной иллюстрации (№1).

Как найти частное двух чисел – 35 и 5?

  1. Пишем числа, участвующие в делении, так:

    Делимое в данном случае – 35, делитель – 5. Под делителем пишется частное.
  2. Находим неполное частное. Посмотрим на первую цифру слева. В нашем случае это 3, и оно меньше 5 – значит, добавляем следующую цифру слева и будем работать с этой величиной (у нас 35).
  3. Определяем, какое количество пятерок (5) поместится в 35. Вспоминаем таблицу умножения и заключаем, что в 35 поместиться 7 пятерок. Значит, в графе частное записываем 7.
  4. Проверяем правильность действий путем умножения: 7 X 5=35. Все верно, решение выполнено точно.

Что нужно знать ребенку для понимания деления столбиком?

Чтобы любимое чадо освоило, как делить уголком (в столбик), нужно два условия:

  • отличное знание таблицы умножения;
  • умение быстро считать в уме.

В конце 3 класса ученики усваивают, как разделить простые двузначные числа.

При переходе в 4 класс дети учатся делить многозначные числа (больше, чем 100). Также происходит обучение делению уголком чисел с двузначным и трехзначным делителем, решение примеров с остатком.

Методика обучения детей делению столбиком

Если школьник пропустил занятия по математике либо не смог усвоить знания на уроке, то родители должны сами донести до него нужную информацию. Спешка в таком деле неуместна – быстро не значит хорошо. Следует проявить терпение. Деление чисел – простое дело для взрослого, а для школьника задача весьма сложная.

Проверьте знание таблицы умножения. Если ребенок не умножает «автоматически», позвольте подсматривать в табличку.

Первый пример можно взять простейший, с делением без остатка на однозначное число (как в иллюстрации №1).

Когда малыш понял принцип и успешно справился с несложным заданием, пора научить его делению трехзначных чисел. Выполним пример №2.

Работа с многозначными числами

Задание 2: разделим 372 на 6. Для этого на листке бумаги производим следующие действия:

  1. Определяем делимое (372) и делитель (6), оформляем запись в уголок:
  2. Неполное частное в нашем варианте, конечно, 37 (т. к. в 3 не поместится 6 ни разу, берем следующую цифру).
  3. Считаем, много ли шестерок уместится в 37. Если 36:6, то получим 6. Получившееся 6 пишем в графе «частное», а 36 пишем под делителем.
  4. Вычитаем из 37-36=1. Пишем единичку слева внизу под чертой:
  5. В единичке не поместится ни одной шестерки, значит, берем оставшуюся цифру из делимого (2). Получилось 12. Нужно определить, сколько в 12 поместится 6 (12 больше 6 ровно в два раза). Получаем 2. Записываем в частное получившуюся величину:

Пример решен, можно проверить правильность путем умножения: 62X6=372.

Как объяснить деление с остатком?

Иногда разделить на равные доли невозможно. Легче всего объяснить такую ситуацию школьнику на несложной задаче. Например:

В группе 8 учеников, на обед им выдали 18 ватрушек на подносе. Когда каждый получит по 2 ватрушки (18:8=2 и ост. 2), на подносе останутся лишние 2 штуки. Это и есть остаток.

Решение столбиком с остатком, по математическому правилу, записывается точно так же, как и без него. Разница лишь в том, что в конце остаток будет. В этом варианте правильно прописать количество целых единиц и количество единиц в остатке (пример: 4 целых и 9 в остатке).

Обучение школьника должно проходить поэтапно, от простых примеров к более сложным.  Если нет понимания простых действий в делении, значит, нужно повторить информацию еще раз. Постепенно решение примеров начнет происходить быстрее и увереннее. Главное – поверить в силы маленького человека, быть терпеливым, и тогда делить числа методом столбца станет интересным занятием для школьника.

Как объяснить ребенку деление столбиком во 2-3 классе

Как объяснить ребенку деление столбиком? Как дома самостоятельно отработать навык деления в столбик, если в школе ребенок что-то не усвоил? Делить столбиком учат во 2-3 классе, для родителей, конечно, это пройденный этап, но при желании можно вспомнить правильную запись и объяснить доступно своему школьнику то, что понадобится ему в жизни.

xvatit.com

Что должен знать ребенок 2-3 класса, чтобы научиться делить в столбик?

Как правильно объяснить ребенку 2-3 класса деление столбиком, чтобы в дальнейшем у него не было проблем? Для начала, проверим, нет ли пробелов в знаниях. Убедитесь, что:

  • ребенок свободно выполняет операции сложения и вычитания;
  • знает разряды чисел;
  • знает назубок таблицу умножения.

Как объяснить ребенку смысл действия «деление»?

  • Ребенку нужно объяснить все на наглядном примере.

Попросите разделить что-либо между членами семьи или друзьями. Например, конфеты, кусочки торта и т.п. Важно, чтобы ребенок понял суть — разделить нужно поровну, т.е. без остатка. Потренируйтесь на разных примерах.

Допустим, 2 группы спортсменов должны занять места в автобусе. Известно сколько спортсменов в каждой группе и сколько всего мест в автобусе. Нужно узнать, сколько билетов нужно купить одной и второй группе. Или 24 тетради нужно раздать 12 ученикам, сколько достанется каждому.

  • Когда ребенок усвоит суть принципа деления, покажите математическую запись этой операции, назовите компоненты.
  • Объясните, что деление – это операция противоположная умножению, умножение наизнанку.

Удобно показать взаимосвязь деления и умножения на примере таблицы.

Например, 3 умножить на 4 равно 12. 
3 — это первый множитель;
4 — второй множитель;
12 — произведение (результат умножения).

Если 12 (произведение) разделить на 3 (первый множитель), получим 4 (второй множитель).

Компоненты при делении называются иначе:

12 — делимое;
3 — делитель;
4 — частное (результат деления).

Как объяснить ребенку деление двузначного числа на однозначное не в столбик?

Нам, взрослым, проще «по старинке» записать «уголком» — и дело с концом. НО! Дети еще не проходили деление в столбик, что делать? Как научить ребенка делить двузначное число на однозначное не используя запись столбиком?

Возьмем для примера 72:3. 

Все просто! Раскладываем 72 на такие числа, которые легко устно разделить на 3: 
72=30+30+12.

Все сразу стало наглядно: 30 мы можем разделить на 3, и 12 ребенок легко разделит на 3.
Останется только сложить результаты, т.е. 72:3=10 (получили, когда 30 разделили на 3) + 10 (30 разделили на 3) + 4 (12 разделили на 3). 

72:3=24
Мы не использовали деление в столбик, но ребенку был понятен ход рассуждений, и он выполнил вычисления без труда.

После простых примеров можно переходить к изучению деления в столбик, учить ребенка правильно записывать примеры «уголком». Для начала используйте только примеры на деление без остатка.

Как объяснить ребенку деление в столбик: алгоритм решения

Большие числа сложно делить в уме, проще использовать запись деления столбиком. Чтобы научить ребенка правильно выполнять вычисления, действуйте по алгоритму:

  • Определить, где в примере делимое и делитель. Попросите ребенка назвать числа (что на что мы будем делить).

213:3
213 — делимое
3 — делитель

  • Записать делимое — «уголок» — делитель.

  • Определить, какую часть делимого мы можем использоваться, чтобы разделить на заданное число.

Рассуждаем так: 2 не делится на 3, значит — берем 21.

  • Определить, сколько раз делитель «помещается» в выбранной части.

21 разделить на 3 — берем по 7. 

  • Умножить делитель на выбранное число, результат записать под «уголком». 

7 умножить на 3 — получаем 21. Записываем.

  • Найти разницу (остаток).

На этом этапе рассуждений научите ребенка проверять себя. Важно, чтобы он понял, что результат вычитания ВСЕГДА должен быть меньше делителя. Если вышло не так, нужно увеличить выбранное число и выполнить действие еще раз.

  • Повторить действия, пока в остатке не окажется 0.

Дальше можно взять пример посложнее, чтобы убедиться, что ребенок усвоил правильную запись и алгоритм рассуждений.

Как правильно рассуждать, чтобы научить ребенка 2-3 класса делить столбиком

Как объяснить ребенку деление 204:12=?
1. Записываем столбиком.
204 — делимое, 12 — делитель.

2. 2 не делится на 12, значит, берем 20.
3. Чтобы разделить 20 на 12 берем по 1. Записываем 1 под «уголком».
4. 1 умножить на 12 получим 12. Записываем под 20.
5. 20 минус 12 получим 8.
Проверяем себя. 8 меньше 12 (делителя)? Ок, все верно, идем дальше.

6. Рядом с 8 пишем 4. 84 разделить на 12. На сколько нужно умножить 12, чтобы получить 84?
Сразу сложно сказать, попробуем действовать методом подбора.
Возьмем, например, по 8, но пока не записываем. Считаем устно: 8 умножить на 12 получится 96. А у нас 84! Не подходит.
Пробуем поменьше… Например, возьмем по 6. Проверяем себя устно: 6 умножить на 12 равно 72. 84-72=12. Мы получили такое же число, как наш делитель, а должно быть или ноль, или меньше 12. Значит, оптимальная цифра 7! 

7. Записываем 7 под «уголок» и выполняем вычисления. 7 умножить на 12 получим 84.
8. Записываем результат в столбик: 84 минус 84 равно ноль. Ура! Мы решили правильно!

Итак, вы научили ребенка делить столбиком, осталось теперь отработать этот навык, довести его до автоматизма.

Почему детям сложно научиться делить в столбик? 

Помните, что проблемы с математикой возникают от неумения быстро делать простые арифметические действия. В начальной школе нужно отработать и довести до автоматизма сложение и вычитание, выучить «от корки до корки» таблицу умножения. Все! Остальное — дело техники, а она нарабатывается с практикой.

Будьте терпеливы, не ленитесь лишний раз объяснить ребенку то, что он не усвоил на уроке, нудно, но дотошно разобраться в алгоритме рассуждений и проговорить каждую промежуточную операцию прежде, чем озвучить готовый ответ. Дайте дополнительные примеры на отработку навыков, поиграйте в математические игры — это даст свои плоды и вы увидите результаты и порадуетесь успехам чада очень скоро. Обязательно покажите, где и как можно применить полученные знания в повседневной жизни.

Уважаемые читатели! Расскажите, как вы учите ваших детей делить в столбик, с какими сложностями приходилось сталкиваться и какими способами вы их преодолели.

Как доступно объяснить ребёнку суть деления числ в столбик.

Подготовка в обучению

Для того, чтобы начать объяснять ребенку принцип счета столбиком, Вы должны понять: готов ли он к этому. Обучение должно начинаться только в том случае, если малыш свободно и правильно производит простые арифметические действия с числами от 0 до 10.

Сюда входят сложение, вычитание, деление и умножение (если ребенок не знает одно из приведенных действий, то лучше научите его заранее, ведь «столбик» желательно учить комплексом, т.е. все вариации разбирать вместе). Важно повторить все перед «стартом», ведь это — самая основа, которую закладывают во 2 — 3 классе.

Не забудьте «разобрать по полочкам» понятие единиц, десятков, сотен и тысяч! Без этого ребенок не сможет наиболее точно понять принцип подсчета и дальше двузначных чисел вы не уйдете.

Здесь отлично подойдет методика, где ученик записывает разные цифры числа под строкой своего разряда. Например: 2312 и 534 — тут получится, что 5 будет под 3, 3 под 1, а 4 под 2, двойка в разряде тысяч будет стоять одна, ведь тысячных частей больше нет.

Как объяснить деление в столбик

Поскольку деление может быть без остатка, а может быть с остатком, рассмотрим два варианта объяснение такого арифметического действия.

Обучение делению в столбик в форме игры

Дети устают в школе, они устают от учебников. Поэтому родителям нужно отказаться от учебников. Подавайте информацию в форме увлекательной игры.

Можно поставить задачи таким образом:

Посадите его игрушки в круг, а ребенку дайте груши или конфеты. Предложите ученику разделить 4 конфеты между 2 или 3 куклами. Чтобы добиться понимания со стороны ребенка, постепенно прибавляйте количество конфет до 8 и 10.

Даже если малыш будет долго действовать, не давите и не кричите на него. Вам потребуется терпение. Если ребенок делает что-то неправильно, исправляйте его спокойно.

Затем, как он завершит первое действие деления конфет между участниками игры, попросит его вычислить, сколько конфет досталось каждой игрушке. Теперь вывод. Если было 8 конфет и 4 игрушки, то каждой досталось по 2 конфеты.

Дайте ребенку понять, что разделить – это значит распределить равное количество конфет всем игрушкам.

Обучать математическому действию можно с помощью цифр.

Дайте ученику понять, что цифры можно квалифицировать, как груши или конфеты. Скажите, что количество груш, которое требуется разделить – это делимое. А количество игрушек, на которых приходятся конфеты – это делитель.

Дайте ребенку 6 груш.

Поставьте перед ним задачу: разделить количество груш между дедушкой, собакой и папой. Затем попросите его поделить 6 груш между дедушкой и папой. Объясните ребенку причину, по которой получился неодинаковый результат при делении.

Расскажите ученику о делении с остатком.

Дайте ребенку 5 конфет и попросите его раздать их поровну между котом и папой. У ребенка останется 1 конфета. Расскажите ребенку, почему получилось именно так. Данное математическое действие стоит рассмотреть отдельно, так как это может вызвать сложности.

Деление чисел

Обучение в игровой форме может помочь ребенку быстрее понять весь процесс деления чисел. Он сможет усвоить, что наибольшее число делится на наименьшее или наоборот. То есть, наибольшее число – это конфеты, а наименьшее – участники. В столбике 1 числом будет количество конфет, а 2 – количество участников.

Не перегружайте ребенка новыми знаниями. Обучать нужно постепенно. Переходить к новому материалу нужно тогда, когда предыдущий материал закреплен.

Обучение делению в столбик при помощи таблицы умножения

Ученики смогут разобраться в делении быстрее, при условии того, что они хорошо знают умножение.

Родителям необходимо разъяснить, что деление имеет сходство с таблицей умножения. Только действия противоположны. Для наглядности нужно привести пример:

  • Скажите ученику, чтобы он произвол умножение значений 6 и 5. Ответ – 30.
  • Подскажите школьнику, что число 30 является результатом математического действия с двумя числами: 6 и 5. А именно, результатом умножения.
  • Разделите 30 на 6. В результате математического действия получится 5. Школьник сможет убедиться в том, что деление – это то же, что и умножение, но наоборот.

Можно воспользоваться таблицей умножения для наглядности деления, если ребенок хорошо ее усвоил.

Также нужно научить юного ученика, тому, как называются категории, описывающие операцию деления – «делимое», «делитель» и «частное». На примере покажите, какие цифры являются делимым, делителем и частным. Закрепите эти знания, они необходимы для дальнейшего обучения!

Двигайтесь дальше, разбирая другие примеры из таблицы умножения.

По сути, вам нужно научить ребёнка таблице умножения «наоборот», и запомнить её необходимо так же хорошо, как и саму таблицу умножения, ведь это будет необходимым, когда вы начнёте обучение делению в столбик.

Обучение делению в столбик в тетради

Начинать обучение нужно тогда, когда ученик понял материал о делении на практике, с помощью игры и таблицы умножения.

Пример деления

Нужно начинать делить таким образом, применяя простые примеры. Так, деление 105 на 5.

Объяснять математическое действие нужно подробно:

  • Напишите в тетради пример: 105 разделить на 5.
  • Запишите это, как при делении в столбик.
  • Расскажите, что 105 – делимое, а 5 – делитель.
  • С учеником определите 1 цифру, которая допускает деление. Значение делимого – 1, эта цифра не делится на 5. А вот второе число – 0. В итоге получится 10, это значение допускается разделить данный пример. Число 5 два раза входит в число 10.
  • В столбике деления, под числом 5, напишите цифру 2.
  • Попросите ребенка число 5 умножить на 2. По итогу умножения получится 10. Это значение нужно записать под числом 10. Далее нужно написать в столбике знак вычитания. От 10 нужно отнять 10. Получится 0.
  • Запишите в столбике число, получившееся в результате вычитания – 0. У 105 осталось число, которое не участвовало в делении – 5. Это число нужно записать.
  • В итоге получится 5. Это значение нужно разделить на 5. Результат – цифра 1. Это число нужно записать под 5. Результат деления – 21.

Родителям нужно объяснить, что это деление не имеет остатка.

Начать деление можно с цифр 6,8,9, затем переходить к 22, 44, 66, а после к 232, 342, 345, и так далее.

Еще один пример деления

Многозначные числа

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.
  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

На заметку! Примеры с семизначными цифрами с третьеклассниками решать не нужно. Это лишнее. Достаточно остановиться на заданиях с пятизначными числами (до 10 000). Деление миллионов дети проходят в старших классах.

Обучение делению с остатком

Когда ребенок усвоит материал о делении, можно усложнять задачу. Деление с остатком – это следующая ступень обучения. Объяснять нужно на доступных примерах:

  • Предложите ребенку разделить 35 на 8. Запишите в столбик задачу.
  • Чтобы ребенку было максимально понятно, можно показать ему таблицу умножения. В таблице наглядно видно, что в число 35 входит 4 раза число 8.
  • Запишите под числом 35 число 32.
  • Ребенку нужно от 35 вычесть 32. Получится 3. Число 3 является остатком.

Деление с остатком

Как делать проверку

Проверка деления производится с помощью умножения: делитель умножается на делитель. Делать это можно столбиком:

Теперь проверим:

Для проверки деления с остатком нужно:

  1. Умножить полное частное на делитель.
  2. Прибавить к результату остаток.

17х2=34

34+1 (остаток) =35

Алгоритм проверки правильности решения примера деления не изменяется от разрядности цифр.

Важно! Первое время просите ребенка расписывать проверку умножением подробно, чтобы проверить и закрепить знание таблицы.

Видео: как научиться делить в столбик

Обучение делению столбиком десятичных дробей с запятой

Деление десятичных дробей может запутать ребенка из-за постановки запятой.

Деление десятичных дробей

Чтобы ребенок сориентировался в этом математическом действие, ему необходимо разложить информацию «по полочкам»:

Десятичная дробь допускает деление не только на десятичную дробь, но и на целое значение. В таких задачах необходимо действовать, как с обычными примерами. Только когда у делимого закончатся значения до запятой, ее нужно поставить в частное. Далее деление тоже протекает привычным способом.

Десятичные дроби так же делятся на десятичные дроби. В этом математическом действии нужно убрать запятые у второго числа. Для этого требуется перенести ее вправо в обоих значениях на то количество цифр, которое отделено у делителя.

Советы по наиболее быстрому и продуктивному обучению ребенка подсчета «столбиком»

  • Не торопитесь! Дайте ребенку разобраться с правилами подсчета столбиком. Только если он все поймет, то обучение можно назвать успешным;
  • Давайте ребенку отдыхать. Только при сочетании продуктивной работы и отдыха его мозг сможет наиболее точно обработать массивный поток новой информации;
  • Поощряйте правильные ответы. Больше хвалите или угощайте ребенка. Так у него появится стимул заниматься, а значит и интерес, что Вам и нужно, ведь так он сможет выполнять данные действия. Все у вас получится, главное — заниматься!

Как научить ребенка делению – закрепляем навык

Главное из-за чего у многих школьников возникает проблема с математикой — это неумение быстро делать простые арифметические расчеты. А на этой основе построена вся математика в начальной школе. Особенно часто проблема именно в умножении и делении.
Чтобы ребенок научился быстро и качественно проводить расчеты деления в уме — необходима правильная методика обучения и закрепление навыка. Для этого мы советуем воспользоваться популярными на сегодня пособиями в усвоение навыка деления. Одни предназначены для занятий детей с родителями, другие для самостоятельной работы.

  1. «Деление. Уровень 3. Рабочая тетрадь» от крупнейшего международного центра дополнительного образования Kumon
  2. «Деление. Уровень 4. Рабочая тетрадь» от Kumon
  3. «Не Ментальная арифметика. Система обучения ребенка быстрому умножению и делению. За 21 день. Блокнот-тренажёр.» от Ш. Ахмадулина – автора обучающих книг-бестселлеров

Самым главным, когда вы учите ребёнка делению в столбик, является  усвоение алгоритма, который, в общем-то, достаточно прост.

Если ребёнок хорошо оперирует таблицей умножения и «обратным» делением, у него не возникнет трудностей. Тем не менее очень важно постоянно тренировать полученный навык. Не останавливайтесь на достигнутом, как только вы поймёте, что ребёнок уловил суть метода.

Для того чтобы легко научить ребёнка операции деления нужно:

  • Чтобы в возрасте двух–трех лет он освоил отношения «целое – часть». У него должно сложиться понимание целого, как неразделимой категории и восприятие отдельной части целого как самостоятельного объекта. Например – игрушечный грузовик – целое, а его кузов, колеса, дверцы – части этого целого.
  • Чтобы в младшем школьном возрасте ребенок свободно оперировал действиями по сложению и вычитанию чисел, понимал суть процессов умножения и деления.

Для того чтобы занятия математикой доставляли ребёнку удовольствие, необходимо возбуждать его интерес к математике и математическим действиям, не только во время обучения, но и в бытовых ситуациях.

Поэтому поощряйте и развивайте наблюдательность у ребёнка, проводите аналогии с математическими действиями (операции на счёт и деление, анализ отношений «часть-целое» и т.д.) во время конструирования, игр и наблюдений за природой.

Видео: тренажёр быстрого деления в уме для школьников


Источники

  • https://zen.yandex.ru/media/id/5b73c8c1f43a0900a9f1263b/5c6361690cfdc500ac23e4ce
  • https://babyzzz.ru/parents/kids/31507.html
  • https://slovami.net/delenie-chisel-stolbikom/
  • http://MaryPop.ru/shkola/obuchenie-matematike/obyasnit-rebenku-delenie-v-stolbik.html
  • https://razvitie-vospitanie.ru/kak_nauchit/rebenka_delit_v_stolbik.html

Как научить ребенка делить столбиком быстро и легко

Математические премудрости порой заставляют детей всячески избегать контакта с учебниками и зубрежкой, а родителей – тратить свои нервы на настоятельные рекомендации малыша все же освоить столь необходимые азы. Как научить ребенка делить столбиком, если он не хочет? Почему этот процесс может не получаться? И как достичь оптимального результата, не прибегая к помощи репетиторов? Что ж, посмотрим.

От простого к сложному

Дети обычно проходят тему деления в столбик, когда переходят в 3 или 4 класс. На момент обучения ими в обязательном порядке должны быть усвоены простые навыки сложения и вычитания, а принципы умножения и деления должны быть известны в теории и достаточно хорошо на практике. Запомнить правила деления столбиком сложно, если до сих пор не выучена таблица умножения.

И так, что такое деление? Это разделение определенного количества на равные части. Ребенку стоит объяснить это на примере. Например, возьмите 12 яблок и предложите каждому члену семьи (маме, папе, брату/сестре и самому ученику) раздать яблоки поровну. Затем усложните задачу и предложить раздать 12 яблок трем членам семьи. Оговорите полученный в обоих случаях результат со своим малышом. Старайтесь сразу донести суть, заключающуюся в обратности умножения и деления, на разных примерах таблицы.

Скажите ребенку, что из двух чисел, участвующих в умножении (например, 4х5=20), при делении ответом будет второе из них (20/4=5 или 20/5=4).


Как научить ребенка делить столбиком: принцип наглядности

Первое, что должен запомнить ребенок в процессе деления, — это понятия делимого, делителя и частного. Объяснение делайте подробным, «разжевывайте» каждое действие. Продемонстрируем пример в таблице.

ШагОписание
Предположим, что нам необходимо делимое «762» разделить на 6. Запишем эти значения, отделив перпендикулярными линиями.
Рассмотрим первую цифру делимого «7». Если его разделить на делитель «6», получится «1». Записываем это значение как первую цифру частного. Кроме того, возможность поделить первое значение делимого на делитель означает в данном случае, что частное будет состоять из 3-х цифр.
Прописываем под первой цифрой делимого «6» (оно у нас получилось за счет умножения делителя на 1) и вычитаем столбиком «7-6» - получается «1».
Теперь переносим вниз вторую цифру делимого и подставляем ее к нашей «1» - получается «16». Сколько цифр «6» (нашего делителя) умещается в цифре «16»? Правильно, две. Записываем полученный результат после «1» в частном.
Далее вычисляем, сколько остается от «16», если забрать из этого значения 2 раза по «6» (то есть 12) – получается «4». Переносим это значение вниз, как и в первом случае. И к нему подставляем оставшееся третье число в делимом – образовалась цифра «42».
Осталось выяснить, сколько в «42» помещается наших делителей «6» - их там 7. Это и есть наша оставшаяся цифра с частном – оно получилось «127».
Важно отметить, что «42» полностью делится на «6», не оставляя никаких остатков.

Читайте также: Где найти репетитора по английскому языку для школьника

Несколько правил обучения

Чтобы запоминание проходило достаточно легко и быстро, соблюдайте несколько правил:

  • Важно не запомнить, в какой последовательности делаются вычисления, а понять их алгоритм.
  • Постоянно повторяйте таблицу умножения. Совсем не обязательно держать под рукой таблицу Пифагора для этого – ищите примеры в окружении на прогулки (считайте, умножайте и делите листья, шишки, деревья, куличики и прочее). И тогда проблема, как научить ребенка делить столбиком, будет решаться быстрее и интереснее.
  • Начинать обучение стоит, используя одно- или двузначные числа, постепенно усложняя поставленную задачу.
  • Никаких криков и истерик с вашей стороны. Для вас умножение и деление – простое дело, производимое в уме, а для малыша – шаг к новым знаниям. Когда-то и вы были на его месте.

Обучение детей любым математическим премудростям должно происходить максимально в игровой форме, чтобы вызвать интерес и внимание. Даже такие сложные задачи, как получение дробей, построение синусоид и прочее, станут со временем понятными и простыми. Относитесь с терпением к своим любимым деткам и не отказывайте им в помощи и поддержке.

Как научить деление в столбик: пошаговый метод

В этой статье я объясню, как обучить делению в столбик в несколько шагов. Вместо того, чтобы показывать студентам сразу весь алгоритм, мы искренне воспринимайте это «шаг за шагом».

До ребенок готов учить деление в столбик, он должен знать:

  • таблицы умножения (по крайней мере неплохо)
  • базовая концепция деления, основанная на таблицах умножения
    (например, 28 ÷ 7 или 56 ÷ 8)
  • базовое деление с остатками (например 54 ÷ 7 или 23 ÷ 5)

Одна из причин, почему деление в столбик затруднено

Длинное деление - это алгоритм, который повторяет основные шаги
1) Делить; 2) Умножить; 3) Вычесть; 4) Отбросьте следующую цифру.

Из этих шагов №2 и №3 могут стать трудными и запутать учащихся, потому что они, по-видимому, не имеют отношения к разделению - они имеют отношение к нахождению остатка. На самом деле, чтобы указать на это, мне нравится объединять их в один "умножить и вычесть" шаг.

Чтобы избежать путаницы, я рекомендую обучать полному делению в таком мода на то, что дети сначала НЕ подвергаются всем этим шагам. Вместо этого вы можете научить этому в несколько «ступенек»:

  • Шаг 1: Все цифры четные.Здесь студенты отрабатывают только разделительную часть.
  • Шаг 2: Остаток в единицах. Сейчас же, студенты практикуют часть "умножить и вычесть" и связать это с поиском остаток.
  • Шаг 3: Остаток в десятках. Ученики теперь используйте весь алгоритм, в том числе «отбрасывание следующей цифры», с использованием 2-значного дивиденды.
  • Шаг 4: Остаток в любом месте ценности. Студенты практикуют весь алгоритм, используя более длинные дивиденды.

Шаг 1. Деление четное по всем цифрам

Мы делим числа, в которых каждая цифра сотен, десятков и единиц делится на делитель без остатка. ЦЕЛЬ на этом первом легком шаге чтобы студенты привыкли к двум вещам:

  1. Чтобы привыкнуть к большему делению «угол», чтобы частное писалось сверху.
  2. Чтобы привыкнуть спрашивать, сколько раз делитель переходит в различные цифры делимого.

Ниже приведены примеры проблем для этого шага. Студенты должны проверить каждый деление на умножение.

На этом этапе ученики также учатся смотреть на первые две цифры делимого, если делитель не «входит» в первую цифру:

.

Как сделать длинное деление за 6 шагов [с иллюстрациями]

Вы провели свой класс через большинство больших единиц: сложение, деление, вычитание, умножение. Но вот еще одна хитрость: Как выполнить деление в столбик. Исследование 2012 года, опубликованное в журнале Psychological Science, показало, что понимание пятиклассниками дробей и делений может быть напрямую связано с тем, насколько хорошо они понимают алгебру в старшей школе и успевают в математических классах более высокого уровня - даже с учетом различных социально-экономических факторов.Никакого давления, правда? Если мысль об обучении длинному делению вызывает у вас холодный пот и липкие ладони, не волнуйтесь - мы сделали всю работу за вас. В этом посте вы найдете:

Как выполнить деление в столбик за шесть шагов

1. Обзор

Первый шаг, который вы должны сделать, - это шаг назад. Для ученика 4-го класса деление в столбик представляет собой сложную смесь разных операции. Чтобы успешно научиться делать длинное деление, им необходимо пересмотреть эти фундаментальные концепции. Согласно французскому исследованию, «представление и извлечение математических фактов из долговременной памяти» является одним из наиболее важных факторов при определении способности ученика будущий математический успех.Согласно тому же исследованию, деление в столбик - это «синтез всех арифметических знаний». Убедитесь, что ваши ученики понимают, что умножение - это результат повторного сложения, а деление - это просто противоположное - повторное вычитание. Используйте блоки по основанию 10 или деньги для подкрепления числовое значение и смысл числа. Планируйте мероприятия, в которых учащихся просят создать «группы фактов», чтобы убедиться, что учащиеся понимают, как взаимодействуют различные функции.
Используйте игры на умножение и другие математические игры, чтобы заинтересовать учащихся в обучении и развить уверенность в математике, прежде чем продолжать.

2. Начинайте с простого

Давайте начнем с урока лексики. В уравнении деления в столбик есть много разных частей. Убедитесь, что ваши ученики знают, что они имеют в виду и как их идентифицировать. Дивиденд - это число в правой части уравнения под линией. Он представляет собой разделяемую сумму. Делитель - это число слева - оно делает деление. Частное - это число вверху. Он представляет ответ или количество единиц в каждом значении разряда после завершения уравнения.Остаток - это число вверху справа. Он представляет собой оставшиеся единицы, которые нельзя равномерно разделить на частное. Во-первых, введите уравнение, в котором нет остатков, чтобы студенты могли привыкнуть к формату и начать понимать новый словарный запас, который они только что выучили: Спросите студентов, сколько раз 2 вписывается в 4. Это может быть сложной концепцией для их, поэтому используйте идею совместного использования: если вы хотите разделить 4 объекта между двумя людьми, сколько предметов получит каждый? Когда они дадут правильный ответ, поставьте 2 над 4.Затем повторите шаг со второй цифрой делимого. Используйте эти простые уравнения, чтобы усилить числовую ценность. Объясните ученикам, что, когда они спрашивают, сколько раз 2 может перейти в 4, они на самом деле спрашивают, сколько раз 2 входит в 40.

3. Оставайтесь в единицах

Попросите учащихся практиковать вышеуказанный шаг, пока они не почувствуют себя комфортно с базовым форматом. Тогда пора двигаться дальше. Вместо того, чтобы сразу переходить к уравнению с остатками, начните с другого предметного урока .Разделите учащихся на группы по три, четыре или шесть человек и раздайте каждой группе по 50 ватных шариков (или мармелад, или помпоны, или зефир - любой маленький предмет, доступный в вашем классе). Попросите учеников разделить предметы так, чтобы каждый член группы группа имеет равное количество, затем наблюдайте и ждите. В конце концов они поймут, что не могут разделить его поровну, и всегда останутся какие-то объекты. Вот где вы приходите, чтобы спасти положение и объяснить, как выполнять деление в столбик с остатками .Сначала покажите студентам задачу, в которой остаток находится в единицах: Теперь начните со столбца десятков и проработайте задачу: 5 переходит в 5 ровно один раз, так что там ничего не останется. Но сколько раз 5 превратится в 7, и что вы будете делать с остатками? Покажите студентам новые шаги:
  • Разделите делимого в столбце единиц на делитель
  • Умножьте делитель на частное справа разместить столбец
  • Вычтите произведение из столбца единиц
Число, которое у них осталось, и есть остаток.Обязательно смоделируйте несколько задач в классе, чтобы учащиеся могли начать понимать шаги и как правильно писать свои ответы. Это хорошее время на уроке, чтобы научить студентов проверять свои ответы. Попросите их умножить делитель на частное и сложить остаток - ответ должен быть таким же, как и дивиденд, с которого они начали.

4. Остаться в десятках

Теперь ученикам пора заняться задачами, в которых делитель не вписывается точно в столбец десятков или единиц.Шаги более или менее идентичны, за исключением одного нового добавления:
    • Разделите делимое в столбце десятков на делитель
    • Умножьте делитель на частное в столбце разряда десятков
    • Вычтите произведение из делителя
    • Понизьте дивидендов в столбце единиц и повторите .
Для простоты начните с однозначных делителей и двузначных дивидендов. Помните, что это совершенно новая концепция для учащихся, поэтому не торопитесь и моделируйте задачи на доске.Обсудите, почему эти шаги работают, и помогите им понять, насколько важна роль места в этом процессе.

5. Вводите большие числа, постепенно

Вот и все. Или это так? Пусть студенты освоятся с формулой и поработают над небольшими проблемами. По мере того, как они разовьются в уверенности и начнут понимать, как выполнять деление в столбик, начните ставить перед ними задачи с трехзначным делителем, а затем задачи с двузначным делителем. Напомните учащимся, что шаги остаются неизменными, независимо от того, насколько велика задача. , и предложите им использовать макулатуру, чтобы «угадывать и проверять» свое умножение в процессе.Это хорошее место, чтобы убедиться, что они не испытывают затруднений и полностью понимают связь деления с числовой величиной и умножением. Чтобы освежить память, посмотрите это видео из Khan Academy:

6. Как это сделать. деление в столбик с десятичными знаками

Если вы охватили весь свой контент за первые пять шагов, поздравляю! Попросите учащихся продолжать практиковаться в продольном делении больших и малых чисел и укреплять связь между делением и другими математическими концепциями, которые они изучают.Но процесс еще не завершен - учащиеся должны понимать, как выполнять деление в столбик с десятичными знаками. Для начала вернемся к одной из фундаментальных концепций деления: числовой стоимости. Однако на этот раз вы будете двигаться назад, а не вперед.

|

Попросите учащихся решить задачу, как они это делают обычно. Когда они дойдут до шага, на котором они обычно останавливаются на остатке, попросите их поставить десятичную точку в конце частного и деленного и записать несколько нулей после делимого.Попросите их продолжить обычные шаги деления на одно или два разряда, сбрасывая нули. Соедините десятичную дробь с дробями. Попросите их преобразовать частное с десятичной дробью в неправильную дробь. Это должно помочь им понять взаимосвязь между дробями и числовой ценностью и может быть хорошей возможностью более подробно ознакомиться с основами дробей.

Как выполнять деление в столбик (без деления в столбик)

Поздравляем! Ваш блок подходит к концу, и вы успешно научили своих учеников делать столбики.Но знаете ли вы, что есть несколько способов разделить большие числа? Обучение студентов другим способам проверки своей работы является важной частью общих математических стандартов и может улучшить понимание учащимися того, что на самом деле означает длинное деление в данном контексте.

Квадратные модели

Квадратные модели - отличный способ для учащихся, изучающих визуальное представление, понять и концептуализировать деление, а также улучшить чувство чисел. В этом методе используется сетка, чтобы представить процесс разделения как проблему площади: например, 148 ÷ 4 будет разделено на сетку высотой 4 единицы, площадью 148 квадратных единиц и шириной неизвестного числа единиц.Студенты разбивают сетку на более управляемые области: 100 квадратных единиц, 40 квадратных единиц и 8 квадратных единиц. 100 ÷ 4 равно 25, 40 ÷ 4 равно 10, а 8 ÷ 4 равно 2. Эти числа находятся в верхней части модели площади и могут быть добавлены для получения ответа.

Частные частные

Подобно модели площадей, частные частные побуждают учащихся разбивать вопросы с разделением на «более удобные» части. Это помогает учащимся понять, что деление - это определение того, сколько раз одно число может переходить в другое число.Задайте задачу (в данном случае 450 ÷ 23) как уравнение деления в столбик. Попросите учащихся умножить делитель на 2 и 5, чтобы использовать их в качестве справочного материала. Спросите, сколько раз 23 входит в 400, но не ищите точное ближайшее число: сделайте его простым для работы, например 230 (десять раз). Вычтите 230 из 450 и положите 10 справа, чтобы отслеживать это. Возьмите разницу и вычтите ее из дивиденда. Ответ должен быть 220. Спросите, сколько раз 23 переходит в 220. 5 x 23 равно 115, поэтому вычтите это из 220 и запишите 5.Продолжайте, умножая и вычитая, пока окончательное число не станет слишком маленьким. Когда вы достигли этого шага, вы нашли свой остаток! Сложите числа в правом столбце, чтобы найти частное. Частные частные обладают гибкостью, которой нет при длинном делении. Деление в столбик нужно делать точно, но с частными частными можно просто многократно вычесть делитель из дивиденда и все равно прийти к правильному ответу. Используйте этот метод, чтобы усилить числовую ценность и концепцию деления как повторного вычитания.

Упражнения с длинным делением

Лучший способ для студентов научиться делать длинное деление - это практика, практика, практика. Вот список из восьми заданий, которые увлекут ваших учеников делением в столбик и помогут им развить твердые математические навыки.

1. Prodigy

Prodigy - это забавный, увлекательный ресурс с нулевой стоимостью для занятий в классе или дома. Учащиеся исследуют мир, наполненный приключениями, где успех зависит от правильных ответов на математические вопросы.Через панель управления учителем вы можете доставлять контент, согласованный с уроком, в зависимости от оценки, навыков или учащегося. Затем учащиеся отвечают на эти вопросы в игре и в режиме реального времени сообщают вам о своем обучении и понимании . Поощряйте своих учеников практиковать все математические навыки, которые они изучали в классе, включая деление в столбик. Вот как вы можете использовать Prodigy, чтобы: Студенты любят увлекательную игровую платформу, где они могут собирать домашних животных, выполнять задания и сражаться с друзьями.И пока они веселятся, вы помогаете им развить математическую уверенность и навыки деления в столбик. Это победа для всех!

2. Полное деление в натуральную величину

Ученики 5-го класса расширили свои навыки выполнения #long_division с помощью различных занятий @DawhaHighSchool @FawziehHn #kinesthetic #online_division_calculator ➗✔ pic.twitter.com/vuNnKGu9Uc

- najah shams (@najahshams) 19 декабря 2018 г.
Оживите математику с помощью практической головоломки с делением столбиком. Вырежьте из разноцветной бумаги квадраты со всеми числами, которые нужны учащимся, чтобы решить задачу о длинном делении от начала до конца.Используйте клейкую ленту, чтобы провести линии разделения на полу, и раздайте студентам пронумерованные карточки. Начиная с данного уравнения, попросите учащихся разложить все карточки в правильном порядке, чтобы решить уравнение. Это упражнение побуждает учащихся замедлиться и обдумать свои шаги, и это особенно полезно для класса, который все еще пытается освоить шаги умножения.

3. Бинго с длинным делением

|

Bingo - классика не зря. Каждый номер на листе ученика должен соответствовать вопросу, который стоит у вас в передней части класса.Напишите задачу на доске, а затем дайте учащимся бумагу для заметок и возможность решить ее и посмотреть, есть ли она у них на карточке. Как всегда, побеждает первый ученик, который заполнит весь ряд! Бросьте вызов своим ученикам, но убедитесь, что вы уделяете достаточно времени этому заданию - у некоторых учеников могут возникнуть проблемы с быстрым решением проблем, и они могут расстроиться или совершить ошибки, если они не в состоянии угнаться.

4. Учебники по математике

Повысьте уровень грамотности и обучения математике с помощью забавных книг, охватывающих сложные математические концепции.Используйте их, чтобы объяснить учащимся разделение и остатки в увлекательной и увлекательной форме и даже охватить более основные понятия, прежде чем они начнут изучать, как выполнять деление в столбик. Некоторые учебники по математике, посвященные делению, включают: [галерея size = "medium" ids = "3833,3837,3834"]
  • Остаток одного Элинор Дж. Пинчес
  • Тринадцать Бобов Мэтью Макэллиготт
  • Дверной звонок Пэт Хатчинс

5. Проявите творческий подход

У длинного деления много ступеней, и у них есть нужно делать в правильном порядке, чтобы получить правильный ответ.Учащиеся могут запутаться или расстроиться, если не запомнят шаги, что отрицательно скажется на их уверенности в математике и успеваемости. Предложите учащимся придумать свой собственный уникальный способ запомнить, как выполнять деление в столбик - разделите , умножьте , вычтите и уменьшите - чтобы проявить творческий потенциал в вашем классе. Попросите их создать плакат, песню, мнемонический прием или даже небольшую сценку, которую они могут показать своим одноклассникам.Если они стремятся найти способ запомнить шаги, они с большей вероятностью научатся быстро.

6. Реле с удлиненным разделителем

|

Превратите практику деления в столбик в увлекательную классную игру с помощью эстафеты в столбик. Разделите свой класс на команды и составьте карточки с задачами в столбик. Выстройте учеников в группы. Каждая группа получает карточку для начала, и первые ученики выполняют первый набор шагов для решения возникшей у них проблемы. Когда они это делают, второй ученик ищет ошибки и продолжает решение.Если они решат задачу, они могут позвонить вам, чтобы проверить их работу и обменять правильный ответ на карточку с новой проблемой. Продолжайте, пока каждая группа не ответит на все свои карточки, и посмотрите, какая команда победит!

7. Сундук с сокровищами

Это задание - интересный способ для вашего класса отпраздновать завершение своего подразделения по разделению. Возьмите несколько коробок и наполните их небольшим угощением, которое понравится всем в классе. Включите список задач на умножение, которые ученики должны решать в группах, чтобы «открыть» коробку.В качестве дополнительной задачи сделайте это кодом: каждое частное должно совпадать с буквой алфавита, чтобы учащиеся должны были правильно расшифровать ключевую фразу, чтобы открыть коробку.

8. Генератор рабочих листов

Рабочие листы - это проверенный временем элемент математического класса. К счастью для вас, существует множество веб-сайтов, которые сделают всю работу за вас и создадут настраиваемый рабочий лист, который даст вашим ученикам возможность попрактиковаться в делении в столбик. Вот некоторые из наших любимых:

Заключительные мысли об обучении студентов делению в столбик

Самое важное, что нужно помнить при обучении учащихся тому, как выполнять деление в столбик, - не торопиться с материалом.Это большая концепция, которая отличается от всего, что они изучали раньше, и некоторые (если не все) ваши ученики могут сначала столкнуться с трудностями. Если вам нужно, вернитесь к более простым уравнениям и некоторым из более ранних шагов, которые мы описали для вас и работайте над ними, пока ваши ученики не почувствуют себя уверенно. Продолжайте воодушевлять и бросать вызов своим ученикам, и они будут готовы разделять и побеждать в кратчайшие сроки!
Создайте или войдите в свою учетную запись учителя на Prodigy - бесплатной игровой платформе для обучения математике, которую легко использовать как преподавателям, так и ученикам.Он соответствует учебным планам англоязычного мира, его любят более миллиона учителей и 50 миллионов студентов .
.

Как умножать и делить в научной записи

  1. Образование
  2. Наука
  3. Химия
  4. Как умножать и делить в научной записи

Крис Хрен, Питер Дж. Микулецкий

Чтобы упростить работу с крайними числами химики обращаются к научному представлению, которое представляет собой особый вид экспоненциального представления. Основное преимущество представления чисел в экспоненциальном представлении состоит в том, что оно упрощает общие арифметические операции, такие как умножение и деление.

Умножение в экспоненциальном представлении

Чтобы умножить два числа, записанных в экспоненциальном представлении, вы вычисляете коэффициенты и показатели отдельно . Вот пример:

Чтобы решить эту проблему, просто выполните следующие действия:

  1. Умножьте коэффициенты.
  2. Сложить показатели степеней 10.
  3. Соедините новый коэффициент с новой степенью 10, чтобы получить ответ.

Деление в экспоненциальной системе

Чтобы разделить два числа, записанных в экспоненциальной системе счисления, вы также отдельно вычисляете коэффициенты и показатели, но теперь это включает деление и вычитание.Вот пример:

Чтобы решить эту проблему, выполните следующие действия:

  1. Разделите коэффициенты.

  2. Вычтите показатель степени в знаменателе из показателя степени в числителе.
    Помните, что знаменатель - это нижнее число, а числитель - это верхнее число.

  3. Присоедините новый коэффициент к новой степени 10.

Хорошо, время для нескольких практических вопросов.

Практические вопросы

  1. Умножьте следующее:

  2. В экспоненциальном представлении разделите следующее:

Ответы и пояснения

  1. Правильный ответ:

    Сначала умножьте коэффициенты:

    Затем умножьте степень 10, добавив экспоненты:

    Необработанное вычисление дает

    , которое преобразуется в данный ответ, когда вы выражаете его в экспоненциальной нотации:
  2. Правильный ответ:

    Сначала преобразуйте каждое число в экспоненциальное представление:

    Затем разделите коэффициенты:

    Затем вычтите показатель степени знаменателя из показателя числителя, чтобы получить новую степень 10:

    Соединить новый коэффициент с новой степенью:

    Наконец, выражаем благодарность за то, что ответ уже удобно выражен в научных обозначениях.
Об авторе книги

Кристофер Хрен - учитель химии в средней школе, бывший тренер по легкой атлетике и футболу. Питер Дж. Микулеки, доктор философии, преподает биологию и химию в Учебном центре Fusion и Академии Fusion.

.

python - как разделить / умножить значение столбца на значение другого столбца в пандах?

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант
.

десятичные дроби

Уловка состоит в том, чтобы избавиться от десятичной точки в числе, на которое мы делим.

Как? Мы можем «сдвинуть десятичную точку» в сторону, умножив на 10 столько раз, сколько нам нужно.

Но мы должны сделать то же самое, что и , с обоими числами в делении.

Пример: 15 разделить на 0,2

Давайте умножим 0,2 на 10, что сдвинет десятичную точку в сторону:

0.2 × 10 = 2

Но мы должны также сделать это с 15:

15 × 10 = 150

Итак, 15 ÷ 0,2 стало 150 ÷ ​​2 (они , оба в в 10 раз больше):

150 ÷ ​​2 = 75

Итак, ответ:

15 ÷ 0,2 = 75


Число, на которое мы делим, называется делителем.

Для деления десятичных чисел:

Умножьте делитель на необходимое количество десятков, пока не получите целое число.
Не забудьте умножить делимое на такое же количество десятков.

Для умножения на 10 проще просто «сдвинуть десятичную дробь»:

Пример: разделить 6,4 на 0,4

Давайте просто сдвинем десятичную точку на один пробел для обеих :

переезд 1
6,4 64
0,4 4
переезд 1

6.4 / 0,4 в точности совпадает с 64/4 ,
, поскольку мы переместили десятичную точку на оба числа .

Теперь мы можем рассчитать:

64/4 = 16

Итак, ответ:

6,4 / 0,4 = 16

Неужели в 6.4 действительно 16 лотов из 0,4 ? Посмотрим:

Для более сложных вопросов нам может понадобиться использовать Long Division:

Пример: разделить 0,539 на 0.11

Переместите десятичную точку так, чтобы делитель (0.11) был целым числом:

переместить 2 ячейки
0,539 5,39 53,9
0,11 1,1 11
переместить 2 ячейки

А как насчет 53.9? В нем все еще есть десятичная точка.

Ну, мы можем игнорировать десятичную точку в дивиденде, если мы помним, что вернули ее позже . Сначала делаем расчет без десятичной точки:

049
11) 539
0
53
44
99
99
0

Теперь поместите десятичную точку в ответе непосредственно над десятичной точкой в ​​делимом:


Ответ - 4.9

Другой пример:

Пример: разделить 9,1 на 7

Нам вообще не нужно сдвигать десятичную запятую, так как делитель (7) уже является целым числом.

Игнорируйте десятичную точку в делимом и используйте длинное деление:

13
7) 91
7
21
21
0


Поместите десятичную точку в ответе непосредственно над десятичной точкой в ​​делимом:

Ответ - 1.3

Анимации

Взгляните на эти анимации десятичного деления для дальнейшей помощи.


Наконец ...

В качестве последней проверки мы можем надеть шляпу «здравого смысла» и подумать: «Подходит ли это размер?», Потому что мы не хотим ни за что платить в десять раз больше, и мы не хотим получать только один - десятая часть того, что нам нужно!

.

10 РАЗВИТИЕ УРОВНЯ ПРЕПОДАВАНИЯ МАТЕМАТИКИ | Добавляем: помощь детям в изучении математики

Кэмпбелл, П.Ф. (1996). Расширение прав и возможностей детей и учителей в классах начальной математики городских школ. Городское образование , 30 , 449–475.

Карпентер, Т. (1988). Обучение как решение проблем. В Р. И. Чарльз и Э. А. Сильвер (ред.), Обучение и оценка решения математических задач (стр.187–202). Рестон, Вирджиния: Национальный совет учителей математики.

Карпентер, Т.П., Феннема, Э., и Франке, М.Л. (1996). Когнитивно управляемое обучение: база знаний для реформы начального обучения математике. Журнал начальной школы , 97 , 3–20.

Карпентер, Т.П., Феннема, Э., Франке, М.Л., Эмпсон, С.Б., и Леви, Л.В. (1999). Детская математика: познавательное обучение . Портсмут, Нью-Хэмпшир: Heinemann.

Карпентер, Т.П., Феннема, Э., Петерсон, П.Л., Чанг, К.П., и Лоэф, М. (1989). Использование знаний о математическом мышлении детей в классе: экспериментальное исследование. Американский журнал исследований в области образования , 26 , 499–531.

Карпентер, Т.П., и Леви, Л. (1999, апрель). Развитие представлений об алгебраическом мышлении в начальных классах. Документ, представленный на заседании Американской ассоциации исследований в области образования, Монреаль.

Clark, C.M., & Peterson, P.L. (1986). Мыслительные процессы учителей. В M.C.Wittrock (Ed.), Справочник по исследованиям по обучению (3-е изд., Стр. 225–296). Нью-Йорк: Макмиллан.

Кобб П., Вуд Т., Якель Э. Николлс Дж., Уитли Дж., Тригатти Б. и Перлвиц М. (1991). Оценка проблемно-ориентированного проекта по математике для второго класса. Журнал исследований в области математического образования , 22 , 3–29.

Коэн, Д.К., и Болл, Д.Л. (1999). Обучение, возможности и улучшение (Отчет об исследовании CPRE № RR-043). Филадельфия: Университет Пенсильвании, Консорциум исследований политики в области образования.

Коэн, Д.К., и Болл, Д.Л. (2000, апрель). Инструктивное нововведение: переосмысление истории. Документ представлен на встрече Американской ассоциации исследований в области образования, Новый Орлеан.

Конференция Совета математических наук. (2000, сентябрь). CBMS «Математическое образование учителей» Проект отчета [On-line].Доступно: http://www.maa.org/cbms/metdraft/index.htm. [3 января 2001 г.].


Давенпорт, Л. (в печати). Учебные планы элементарной математики как инструмент реформы математического образования: проблемы реализации и последствия для профессионального развития. В P.Smith, A.Morse, & L.Davenport (Eds.), Обучение учителей и реализация учебной программы . Ньютон, Массачусетс: Центр развития образования, Центр развития обучения.


Эрлвангер, С., & Берлангер, М. (1983). Интерпретации знака равенства у младших школьников. В J.C.Bergeron & N.Herscovics (Eds.), Proceedings of the Fifth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (vol. 1, pp. 250–258). Монреаль: Монреальский университет. (Услуга размножения документов ERIC № ED 289 688).


Фолкнер, К.П., Леви, Л., и Карпентер, Т.П. (1999). Понимание равенства детьми: основа алгебры. Обучение детей математике , 6, 232–236.

Феннема, Э., Карпентер, Т.П., Франке, М.Л., Леви, Л., Якобс, В., и Эмпсон, Б. (1996). Продольное исследование обучения использованию детского мышления в обучении математике. Журнал исследований в области математического образования , 27 , 403–434.

.

Смотрите также

Карта сайта, XML.